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Abstract 

Within the fields of behavioural and psychological research, the use of Bayesian statistics has 

gathered increased interest. A statistical test commonly employed in behavioral and 

psychological research is the t-test. For the Bayesian t-test, a Bayes Factor (BF) can be computed 

which reflects evidence in favor of either the alternative hypothesis (H1) or the null hypothesis 

(H0). Even though the BF is a continuous measure of evidence, it is common to define specific 

thresholds for accepting the evidence in favor of either the H1 or the H0. Such evidence 

thresholds (e.g., BF > 3, BF > 6, BF > 10) are adopted by related scientific journals to define 

minimum publication or preregistration requirements. However, exceeding these thresholds is 

not analogous when H1 is true compared to when H0 is true. In turn, this disanalogy might 

require scientists to invest additional time and resources when H0 is true, as opposed to when H1 

is true. In this study, we simulated 200 million BFs for various effect size, sample size, and 

variance assumptions, to demonstrate this disanalogy. Further, we show that despite having small 

shifts in the sample sizes required for exceeding various BF thresholds when H1 is true, when the 

H0 is true the probabilities of exceeding a BF > 6 or a BF > 10 are close to chance. As such, we 

recommend the use of a BF > 3 evidence threshold for the H0 independently of the evidence 

threshold set for H1. 

 

Keywords: Bayes Factors, Bayesian statistics, t-test, null hypothesis, BF threshold, BF          
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Can we Find Evidence for the Null in a Bayesian T-Test? Not Unless we Reconsider Bayes 

Factor Thresholds 

 Following the so-called replication crisis (see Derksen, 2019; Nelson et al., 2018), 

behavioural and psychological research has increased its reliance on rigour-enhancing methods. 

Rigour-enhancement includes adopting methods such as pre-registration and methodological 

transparency (Chambers & Tzavella, 2022; Lin et al., 2024; Nosek et al., 2018), confirmatory 

testing (Dienes, 2014; Lakens et al., 2020), and appropriate sample size recruitment (Lakens, 

2013, 2022). Such rigour-enhancing methods have been shown to increase the replicability of 

findings from the behavioural and social sciences (Protzko et al., 2023; but see van den Akker et 

al., 2023)1. 

Within a similar context, many researchers have advocated for the adoption of Bayesian 

statistics, contrary to the traditional Neyman-Pearson frequentist approach (Neyman & Pearson, 

1933), for making inferences and reaching conclusions (Dienes, 2014, 2021; Heck et al., 2023; 

Kruschke, 2013; Rouder et al., 2009; Schönbrodt et al., 2017; Wagenmakers et al., 2010). One of 

the arguments in favor of the adoption of Bayesian statistics, relates to the calculation of the 

Bayes Factor (BF). The BF has the advantage of quantifying evidence in favor of either of two 

competing hypotheses, such as the alternative hypothesis (H1) or the null hypothesis (H0), as 

opposed to the conventional approach of using a p-value, which can only inform about the 

rejection (or the failure of the rejection) of H0 (Johansson, 2011; Wagenmakers, 2007; but see 

Lakens et al., 2020 for examples of frequentist tests for H0). 

One of the statistical tests frequently utilized in behavioural and psychological research is 

the t-test, which can be used to explore pairwise comparisons. The Bayesian approach for the t-

test is thoroughly described in earlier work (Fu et al., 2021; Kruschke, 2013; Rouder et al., 

2009). For the commonly used Bayesian t-test, H1 is assigned a prior distribution, which 

expresses the anticipated effect size under H1. In psychology, the prior distribution is most 

commonly described by a curved distribution, and is usually expressed as a Cauchy (Rouder et 

al., 2009). Once data are observed a posterior distribution can be computed, which represents the 

uncertainty about the statistical parameter of interest (i.e., the difference between the two 

 
1 At the time of writing, editors at Nature Human Behaviour were investigating criticisms regarding the registration, 
hypotheses, predictions, and analyses of the Protzko et al. (2023) paper and an editorial response was meant to 
follow. 
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samples). Considering that most model comparisons in psychological research involve nested 

models (i.e., the null hypothesis is a special case of the model, which contains all parameters for 

the t-test; Heck et al., 2023; Wagenmakers et al., 2010), a BF can be computed for the Bayesian 

t-test using the Savage-Dickey density ratio (Dickey, 1971). 

Put simply, the Savage-Dickey density ratio is a convenient way of computing BFs for 

nested models, by dividing the height of the posterior distribution by the height of the prior 

distribution at a specific value of interest (Dickey, 1971; see also Heck et al., 2023; 

Wagenmakers et al., 2010). In the case of a t-test, this value of interest will typically concern δ = 

0, representing no differences between the two samples. An illustration of how the BF is 

calculated based on the Savage-Dickey density ratio is shown in Figure 1 (see Wagenmakers et 

al., 2010 for details and mathematical proof). This approach of calculating a BF is adopted by 

widely used software for conducting Bayesian statistics, such as JASP (for examples see 

Wagenmakers et al., 2018) and JAMOVI. 

Figure 1. Illustration of the Savage-Dickey Density Ratio Method of Calculating a Bayes Factor. 

 

Fig 1. The Savage-Dickey density ratio estimates a Bayes Factor for two competing (nested) models (e.g., H1 vs. 

H0) by dividing the height of the posterior distribution by that of the prior distribution at a specific value of 

interest (or vice versa). In this example, the value of interest is δ = 0 (i.e., no difference), represented by the gray 

dotted line. The data are illustrated to show the Bayes Factor (A) when H1 is true (δ ≠ 0) and (B) when H0 is true 

(δ = 0). 

 Following the Savage-Dickey approach, the resulting BF reflects the marginal likelihood 

of a set of data under H1 over H0, often denoted “BF10”, or the likelihood of H0 over H1, in which 

A B
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case denoted “BF01”. Accordingly, a BF10 > 1 indicates evidence in support of H1, while a BF01 > 

1 indicates support for H02. The BF can range from negative infinity to infinity, and the higher 

the BF, the more evidence we have in favor of the respective hypothesis. As such, the BF serves 

as a continuous, updatable, measure of evidence, where additional observations can be collected 

until the BF reflects what one considers adequate evidence in favor of one of the competing 

hypotheses with confidence (Schönbrodt et al., 2017; Schönbrodt & Wagenmakers, 2018; van 

Ravenzwaaij & Etz, 2021).  

Despite the BF’s continuous property, recommendations have been proposed for setting 

specific evidence thresholds for the BF. Common evidence thresholds based on 

recommendations from Jeffreys (1998; see also Lee & Wagenmakers, 2014), are shown in Table 

1. These recommendations are meant to serve as a heuristic to help researchers decide whether to 

‘accept’ that there is adequate evidence to support either H1 or H0, once the BF reaches or 

exceeds a specific, predefined threshold. This practice opposes the nature of the BF as a 

continuous measure of evidence, however it may serve an important role in psychological 

science, for which some argue that dichotomous claims are crucial (see Uygun Tunç et al., 2023). 

Further, given the BF’s updatable property, it can also serve as an indicator when deciding 

whether adequate sample size has been included, and thus informing researchers if data 

collection should be continued or stopped (Fu et al., 2021; Schönbrodt et al., 2017).  

Table 1. Bayes Factor evidence threshold recommendations (adapted from Jeffreys, 1998 and Lee & 
Wagenmakers, 2014). 

Bayes Factor Log (Bayes Factor) Interpretation 

>1-3 >0-1 Anecdotal evidence 

>3-10 >1-2.3 Moderate evidence 

>10-30 >2.3-3.4 Strong evidence 

>30-100 >3.4-4.6 Very strong evidence 

>100 > 4.6 Extreme evidence 

Note: Log (Bayes Factor) column added for reference only and illustrates the respective Bayes Factor log 
transformation. 

 
2 BFs are ratios, where BF10 and BF01 simply represent the inverse of one over the other (i.e., BF01 = 1/BF10). As 
such, both BF10 and BF01 can be used to quantify evidence for either hypothesis. For example, a BF10 = .5 indicates 
that the data are twice as likely to be represented under H0 than H1 and is the same as BF01 = 2. For the purpose of 
this work, and to make comparisons more intuitive, we use BF10 for presenting our results for a simulated true H1 

and a BF01 when presenting our results for a simulated true H0.   
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At the time of writing, the use of evidence thresholds for BFs is widely adopted by many 

journals relevant to behavioural and psychological research. In detail, many journals define 

minimum BF thresholds, which are required for publication and/or preregistration. The minimum 

BF threshold requirements vary from journal to journal, with common thresholds set at BF > 3 

(e.g., Psychology of Consciousness: Theory, Research and Practice), BF > 6 (e.g., Cortex, 

NeuroImage: Reports), and BF > 10 (e.g., Nature Human Behaviour). Notably, this minimum 

BF threshold is expected to be the same for both BF10 and BF01, which can be problematic, 

especially in the case of the commonly used t-test. 

The problem of designating the same threshold to both BF10 and BF01 relates to the 

representation assigned by the prior distribution to the value of interest. As mentioned 

previously, in the Bayesian t-test, the Savage-Dickey density ratio compares the heights of the 

posterior and prior distributions at δ = 0. However, δ = 0 happens to be the point where the prior 

distribution has its highest density. Because of this, the value 0, which also represents the H0, is 

assigned a higher probability. As such, as the central tendency of the posterior distribution moves 

further away from 0, the highest point of the prior distribution is compared to a lower point on 

the tail of the posterior distribution (Figure 1A). Contrary, when the central tendency of the 

posterior distribution moves closer to 0, the highest point of the prior distribution is compared to 

a higher point towards the center of the posterior distribution (Figure 1B). Respectively, 

obtaining a BF when H1 is true (δ ≠ 0) is not analogous to obtaining a BF when H0 is true (δ = 0), 

since the high density of the prior distribution at 0, will result in a smaller posterior-to-prior 

height ratio, hence, a smaller BF.  

The disanalogous nature of BFs when H1 is true compared to when H0 is true has been 

mentioned in earlier work (Schönbrodt & Wagenmakers, 2018), and it has been demonstrated in 

previous simulations (Phylactou et al., 2023; Phylactou & Konstantinou, 2022). This disanalogy 

has led some researchers to propose the use of ‘flexible’ or ‘negotiable’ BF thresholds (Weiss, 

1997; see also Dienes, 2016; Dienes & Mclatchie, 2018), where, for example, different 

thresholds are used for H1 (e.g., BF10 > 6) and H0 (e.g., BF01 > 3). However, to date, the de facto 

approach adopted by various journals is to set a single, identical, BF threshold for both H1 and 

H0. In the context of a t-test, reaching a specific threshold can be more time-consuming, resource 

demanding, and, in turn, more expensive for when H0 is true, as opposed to when H1 is true. 
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Considering the above, the current use of BF thresholds needs to be reconsidered. 

Therefore, the purpose of this simulation study is to demonstrate the disanalogy between 

reaching an evidence threshold for H0 compared to H1 with the Bayesian t-test. Further, this 

study attempts to define a BF01 threshold that could serve as comparable to a BF10, to guide 

researchers, editors, reviewers, and other stakeholders, when designing, conducting, and 

evaluating research. 

Methods 

To illustrate the disanalogy between BF10 and BF01 we run a simulation that was designed 

based on previous work (Kruschke, 2013; Phylactou et al., 2023; Phylactou & Konstantinou, 

2022; Schönbrodt & Wagenmakers, 2018; van Ravenzwaaij & Etz, 2021) and generated 200 

million BFs: 100 million BF10 simulating a true H1 and 100 million BF01 simulating a true H0. To 

eradicate confusion with data analysis results, we report simulated BFs reflecting a true H1 as 

‘BFH1’ and BFs reflecting a true H0 as ‘BFH0’. Our simulations were implemented in Python 

(v3.11.5) and BFs were computed using the Pingouin package (v0.5.3; Vallat, 2018).  

Simulation Procedure 

In our simulation, for i ∈ {1, 2, 3, …, 10000} iterations, we generated a standard 

deviation (sdi ~ Uniform[α = 0.3, β = 2]), an effect size that also corresponded to the t-test prior 

distribution Cauchy scale (ri ~ Uniform[α = 0.1, β = 2]), and a sample size (ni ~ Uniform[α = 5, β 

= 200]). For the ith iteration, j ∈ {1, 2, 3, …, 10000} iterations where further performed, and a 

BF10 was calculated for when H1 (δ ≠ 0) was simulated to be true, while a BF01 was calculated 

when H0 (δ ≠ 0) was simulated to be true. To simulate a true H1, where δ ≠ 0, a sample with νij 

observations (νij = ni, let ν be an integer) was drawn from a normal distribution with mean ri and 

standard deviation μijsd1 (μijH1 ~ Normal[ri, μijsd1], where μijsd1 ~ Half-Normal[sdi, 0.001]). A true 

H0 (δ = 0) was simulated by generating a sample of zeros for νij observations. To conduct a t-test 

and generate a BF, a reference sample (serving as the second sample for each t-test) was drawn 

from a normal distribution centered on 0 with a standard deviation μijsd2 (μijref ~ Normal[0, μijsd2], 

where μijsd2 ~ Half-Normal[sdi, 0.001]). A BF10 was calculated by conducting a paired t-test 

between the reference distribution and the distribution representing H1, using a Cauchy prior 

distribution centered on 0 with a scale ri. The same Cauchy prior was used to calculate BF01 by 

comparing the distribution representing a true H0 with the reference distribution. Therefore, each 

ij iteration resulted in two BF, one reflecting a true H1 (from hereon reported as BFH1) and one 
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reflecting a true H0 (from hereon reported as BFH0), resulting in 200 million BFs from 100 

million total iterations. The BFs derive from various effect sizes and standard deviations ranging 

from 0 to 2, and for numerous possible sample sizes ranging from 5 to 200. A visualisation of our 

simulation is shown in Figure 2. 

Figure 2. Simulation pipeline used to generate 200 million Bayes Factors. 

 

Fig 2. The simulation conducted to generate 200 million Bayes Factors and estimate the probability of surpassing 

specific thresholds. Specifically, we used uniform distributions to generate a standard deviation (sdi ~ Uniform[α 

= 0.3, β = 2]), an effect size and respectively the prior distribution scale of the t-test (ri ~ Uniform[α = 0.1, β = 2]), 

and a sample size (νi ~ Uniform[α = 0.3, β = 2]), for i iterations (i ∈ {1, 2, 3, …, 10000}). For each iteration i, 

Bayes Factors were calculated j times (j ∈ {1, 2, 3, …, 10000}). To simulate a true H1 (δ ≠ 0) a sample with the 

expected effect size was drawn from a normal distribution (μijH1 ~ Normal[ri, μijsd1], where μijsd1 ~ Half-

Normal[sdi, 0.001]), for νij observations (νij = ni, let ν be an integer). To simulate a true H0 (δ = 0), νij zeros were 

generated. To conduct a t-test and generate a Bayes Factor, a reference distribution centered on 0 was simulated 

from a normal distribution (μijref ~ Normal[0, μijsd2], where μijsd2 ~ Half-Normal[sdi, 0.001]). The distribution for a 

true H1 was compared with the reference distribution using a Bayesian t-test using a Cauchy centered on 0 and 

scale ri (not shown) as a prior distribution, to generate a Bayes Factor. The same Cauchy prior was used to 

compare the distribution for a true H0 with the reference distribution and generate a Bayes Factor.                 
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 Data Analysis 

For our analyses, Bayesian linear regressions were conducted in JASP (v0.18.3, Apple 

Silicon; https://jasp-stats.org), using a JZS prior (see Rouder et al., 2009) with scale r = .354 and 

a binomial model prior (Model ~ Beta [α = 1, β =1]). Bayesian ANOVA models were conducted 

using a JZS prior with scale r = 0.5 and a uniform model prior (Rouder et al., 2012). Differences 

between the probabilities were tested using paired t-tests, assuming a Cauchy prior distribution 

centered on 0 with an r scale set at r = 0.5. A narrow r scale was chosen to assign higher density 

around the null, and thus reflect a stricter criterion for assessing differences (Phylactou et al., 

2022). Reported means are accompanied by their standard error (SE) and 95% Credible Intervals 

(CI). 

For each iteration i we calculated the probability of exceeding a BF threshold of 3, 6, and 

10, separately for BFH1 (when H1 was true) and BFH0 (when H0 was true). These thresholds (BF 

> 3, BF > 6, BF > 10) were chosen because they are commonly recommended and/or required 

by relevant scientific journals. Moreover, to enable analyses in a computationally feasible 

manner, for each iteration i we exported the median pooled standard deviation (sd), the median 

logBFH1, the median logBFH0, and the ratio between the median logBFH1 over the median 

logBFH0. We used the logarithmic transformation of the BFs as this allowed us to handle extreme 

BF values that derived from iterations with large samples and effect sizes. 

 The logBFH1 /logBFH0 ratio was exported to evaluate the analogy between BFH1 and 

BFH0. In detail, a logBFH1 /logBFH0 ratio equal to one, illustrates that the resulting BF is identical 

for H1 and H0 under the same circumstances (same expected effect size, same sample size, same 

data variability). Moreover, a logBFH1 /logBFH0 ratio greater than one illustrates that the resulting 

BF is greater for H1 than H0 under the same circumstances, and, respectively, a logBFH1 /logBFH0 

ratio smaller than one illustrates that the resulting BF is greater for H0 than H1. To assess the 

relationship between sample size, sd, and expected effect size on the logBFH1 /logBFH0 ratio we 

conducted a Bayesian linear regression. Accordingly, if the relationship between BFH1 and BFH0 

is analogous, then none of the covariates included in the model (sample size, sd, expected effect 

size) should describe the model better than a null model. Alternatively, evidence in favor of a 

model including any of the covariates would provide support that BFH1 and BFH0 do not share an 

analogous relationship.    

 

https://jasp-stats.org/
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Additional exploration was conducted after categorizing the data into bins. Specifically, 

sample sizes were grouped into bins of 10, and expected effect sizes (and respectively r) were 

grouped into bins of 0.2. These analyses were conducted as either one sample t-test testing 

against the value 0.5 (equivalent to a 50% percentage of reaching the given threshold) or as a 

paired t-test. These t-tests were described by a half-Cauchy distribution, with a wide scale r = 1. 

The choice of r = 1 was motivated by the greater variation that was anticipated in the data, due to 

the binned sample.  

Data Availability 

All material used in this study can be accessed through: 

https://doi.org/10.17605/OSF.IO/RCKF4. 

Results 

 Following our simulations, we estimated the overall mean probability of exceeding a 

predefined BFH1 > 3 (mean = .791, SE = .003, 95% CI = [.784, .797]), BFH1 > 6 (mean = .759, 

SE = .004, 95% CI = [.752, .765]), and BFH1 > 10 (mean = .737, SE = .004, 95% CI = [.730, 

.745]), when H1 was true. Likewise, we estimated the overall mean probability of exceeding a 

BFH0 > 3 (mean = .789, SE = .003, 95% CI = [.784, .795]), BFH0 > 6 (mean = .576, SE = .004, 

95% CI = [.569, .583]), and BFH0 > 10 (mean = .370, SE = .004, 95% CI = [.363, .377]) for a 

true H0. Bayesian paired t-tests revealed that the probabilities of exceeding BF > 3 were similar 

between BFH1 and BFH0 (logBF10 = -3.939), but different for BF > 6 (logBF10 = ∞) and BF > 10 

(logBF10 = ∞). A summary of the overall probabilities is presented in Table 2 and illustrated in 

Figure 3. 

Table 2. Overall probabilities of reaching a predefined Bayes Factor threshold. 

Threshold Mean probability (SE) Lower 95% CI Upper 95% CI t-test log(BF10) 

BFH1 > 3 0.791 (0.003) 0.784 0.797 
logBF10 = -3.939 

BFH0 > 3 0.789 (0.004) 0.784 0.795 

BFH1 > 6 0.759 (0.004) 0.752 0.765 
logBF10 = ∞ 

BFH0 > 6 0.576 (0.003) 0.569 0.583 

BFH1 > 10 0.737 (0.004) 0.730 0.745 
logBF10 = ∞ 

BFH0 > 10 0.370 (0.004) 0.363 0.377 

 
 

https://doi.org/10.17605/OSF.IO/RCKF4
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Figure 3. Overall mean probability of reaching a predefined Bayes Factor threshold. 

 

Fig 3. Overall probability of exceeding a predefined Bayes Factor threshold when H1 is true (purple line) and 

when H0 is true (yellow line). 

The probabilities of exceeding the predefined BF threshold for different effect sizes and 

sample sizes are illustrated in Figure 4, for both BFH1 (Figure 4A) and BFH0 (Figure 4B). 

Heatmaps of the probabilities are provided in Supplementary Material 1 (Supp. Figure 1). To test 

the analogy between BFH1 and BFH0 we fit a linear regression on the logBFH1 /logBFH0 ratio with 

the expected effect size (r), the sample size (n), and the standard deviation (sd) as covariates. The 

model that included all covariates (r, n, sd) provided the best fit (R2 = .691, model logBF = ∞). 

Considering the estimated mean of each coefficient, the logBFH1 /logBFH0 ratio can be expressed 

as logBFH1 /logBFH0 = 9.481 + 10.249(r) + 0.087(n) – 11.973(sd). This illustrates that the 

logBFH1 /logBFH0 ratio is not analogous, but it increases as the expected effect size and sample 

size increase, and decreases with greater data variability.   

Moreover, we computed two separate regression models, independently for the logBFH1 

and the logBFH0 with r, n, and sd as covariates. For logBFH1, the best fit was provided by a model 

including all covariates (R2 = .648, model logBF = ∞), and can be expressed as logBFH1 = 25.061 

+ 31.925(r) + 0.262(n) – 30.182(sd). For logBFH0, the best model describing the data did not 

include the sd covariate (R2 = .907, model logBF = 6.453). A comparison between the model 

including all covariates (r, n, sd) and the model including only r and n, indicated that the model 

with only r and n better described the data (logBFr+n/r+n+sd = 5.153). As such, the model 
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describing logBFH0 can be expressed as logBFH0 = 2.104 + 1.089(r) + 0.006(n). Taken together, 

the results from the regression models illustrate that under similar circumstances, if H1 was to be 

true, evidence in favor of H1 is likely to be larger than evidence in favor of H0 if H0 was to be 

true. 

Figure 4. Probability of exceeding a predefined Bayes Factor threshold for different effect sizes and sample 

sizes. 

 

Fig 4. Probability of exceeding a predefined Bayes Factor threshold when (A) H1 is true and when (B) H0 is true, 

for different sample sizes. Thick lines represent the mean probability across all expected effect sizes (and 

respectively the r scale of the prior distribution for the t-test), while the dotted lines show the probabilities across 

different expected effect sizes. For illustration purposes, sample sizes were grouped into bins of 10 and averaged 

across all standard deviations.  

To further explore whether a true H1 results in higher BFs compared to H0 we performed 

additional analyses by averaging across all sds, grouping sample sizes into bins of 10, and 

grouping expected effect sizes (and respectively r) in bins of 0.2. The logBFH1 /logBFH0 ratios for 

each effect size bin and a given sample size bin are illustrated in Figure 5A. By employing 

multiple one sample t-tests, we calculated whether the logBFH1 /logBFH0 ratios were greater than 

1, thus, providing evidence for higher BFs for a true H1 than a true H0 (Figure 5B). Results show 

that with the exception of low r-scales (r < 0.4), logBFH1/logBFH0 ratios were larger than 1 

(mean logBF10 = 14.36, SE = 0.88, 95% CI = [12.63, 16.09]). Similar results were found when 

testing whether logBF10 were greater than logBF01 using paired t-tests (mean logBF10 = 14.09, 

SE = 1.63, 95% CI = [10.87, 17.30]; Figure 5C). The logBF10 for each of these tests individually 

are provided in Supplementary Material 2.  

  

A B
BF > 3
BF > 6
BF > 10

r = 2

r = 0.1
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Figure 5. Evidence for higher Bayes Factors when H1 is true compared to when H0 is true. 

 
Fig 5. (A) The ratio of logBFH1 over logBFH0 for different expected effect size and sample size bins (grey dotted 

line represents a ratio of 1). (B) Results from one sample t-tests comparing whether logBF10/logBF01 is greater 

than 1 (grey dotted line represents a logBF10 = 0). (C) Results from paired t-tests comparing whether logBF10 are 

larger than logBF01 (grey dotted line represents a logBF10 = 0). 

To identify a BFH0 threshold comparable to a BFH1 given this disanalogy, we explored the 

conditions under which the BF threshold was exceeded in at least 50% of the simulations (Figure 

6). The results of the series of one sample t-tests, testing whether the BFs from each effect size 

and sample size bin exceed the 50% probability of reaching a predefined threshold are provided 

in Supplementary Material 2 and are illustrated in Supplementary Material 1 (Supp. Figure 2). In 

addition, heatmaps illustrate that the shift of the probabilities was larger across effect size and 

sample size bins for the three different BF thresholds for BFH0 compared to BFH1 (Figure 6A; see 

also Supplementary Material 2 for the results of each t-test individually). This finding was 

supported by a repeated measures ANOVA conducted on the logBFs of each t-test, providing 

evidence for a model including both the hypothesis factor (H1 vs. H0) and the threshold factor 

A

C

B
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(BF > 3 vs. BF > 6 vs. BF > 10), as well as their interaction (R2 = .74, model logBF = 248.29)3. 

These analyses also demonstrated that even though the logBFH1/logBFH0 ratios for r < .4 are 

smaller than 1 (larger BFH0 compared to BFH1) for smaller sample sizes (see Figure 5), these BFs 

fail to exceed the predefined threshold in at least 50% of the simulations (see Supplementary 

Material 2; Supp. Figure 2).  

To define the comparable BFH0 thresholds, we pooled probabilities across the various 

effect sizes together (Figure 6B). In detail, BFH1 reaches above chance (>50%) probability of 

exceeding the BF threshold similarly for thresholds of BFH1 > 3, BFH1 > 6, and BFH1 > 10, with a 

sample size larger than 20. Conversely, BFH0 reaches above chance probability of exceeding a 

BFH0 > 3 with a sample size of at least 10, but a BFH0 > 6 is not reached until a sample size of 40 

is surpassed. Notably, a sample size of at least 140 is required, to reach above chance probability 

of BFH0 > 10. 

Collectively, our results provide evidence for the disanalogous relationship between BFH1 

and BFH0 from a large set of simulated BFs, considering various assumptions including different 

expected effect sizes, sample sizes, and data variability. In summary, our data show that, with 

equivalent assumptions, under a true H1, the resulting BF will be greater compared to the 

resulting BF under a true H0. We further illustrate that even though the BFH1 will tend to be 

smaller when data variability increases, BFH0 remains unaffected by data variability. Finally, our 

simulations demonstrate that similar probabilities of exceeding a BF > 3 threshold can be 

expected when either H1 or H0 are true, but these probabilities differ when a BF > 6 or BF > 10 is 

considered. These differences are driven by the reduced probabilities of reaching the threshold 

under a true H0. We next turn to a discussion of our findings.  

Discussion 

With a simulated sample of 200 million BFs, we demonstrate that, for the Bayesian t-test, 

the probability of reaching a predefined BF threshold when H1 is true is not analogous to the 

probability of reaching a BF threshold under a true H0. Even though this observation was 

previously noted (Phylactou et al., 2023; Phylactou & Konstantinou, 2022; Schönbrodt & 

Wagenmakers, 2018), this is, to the best of our knowledge, the first attempt to explicitly 

 
3 For the computation of this analysis logBF = -∞ values were replaced with the minimum logBF, and logBF = ∞ 
were replaced with the maximum logBF.  
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investigate the relationship between BFH1 and BFH0 for different sample sizes, effect sizes, and 

data variances. Given the adoption of specific BF threshold requirements by scientific journals 

for publication and/or preregistration, our findings have important implications for the use of 

Bayesian statistics within the behavioural and psychological fields. 

Figure 6. Above chance probability of exceeded the Bayes Factor Threshold. 

 
Fig 6. (A) Heatmaps illustrating the estimated probability of exceeding the predefined Bayes Factor threshold in 

at least 50% of the simulations, for various effects and samples. (B) Sample size required to exceed the Bayes 

Factor threshold in at least 50% of the simulations pooled across all expected effect sizes.   

 Even though the use of thresholds contradicts the property of the BF as a continuous 

measure of evidence, their use may benefit behavioural and psychological research. For example, 

aiming for a specific BF threshold can help researchers inform their sampling plan (e.g., sample 

updating; Fu et al., 2021; Schönbrodt & Wagenmakers, 2018). Further, as mentioned earlier, the 

use of these thresholds may also be necessary to adhere to specific scientific journal guidelines. 

A

B
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However, the current use of the BF threshold (i.e., same threshold for H1 and H0) may result in 

spending additional time and resources, if the H0 under investigation is in reality true. 

Researchers, reviewers, editors, and other stakeholders should consider this disanalogy 

when designing and evaluating research. As an example, consider a hypothetical scenario, where 

a research team is planning an experiment for an expected difference between two samples of a 

magnitude of 0.4, with enough resources to recruit up to 60 participants. According to our 

simulations, if H1 turns out to be true, the experiment will have above chance probability of 

exceeding a BF > 10 threshold but will only exceed a BF > 3 if H0 is true. Further, even with the 

maximum sample size simulated here (n = 200), if H0 is true, the BF > 10 threshold will not be 

reached. In such a case, the research team will be able to target a scientific journal that requires a 

BF > 10 threshold if H1 is true, but not if H0 is true. In addition, if the research team is targeting 

the specific journal, they might refrain from preregistration, due to the risk of not reaching the 

threshold in the case of a true H0. As such, we recommend that this disanalogy between BFH1 and 

BFH0 is taken into consideration in cases where BF thresholds are required. 

 Our findings echo previous recommendations and provide evidence from a large 

simulated dataset showcasing the necessity of considering flexible evidence thresholds between 

BFH1 and BFH0 (Weiss, 1997; see also Dienes, 2016; Dienes & Mclatchie, 2018). Following our 

results, we recommend the use of a BF01 = 3 (BF10 = 1/3) as an adequate threshold of evidence 

for accepting the H0 independently of the evidence threshold used to accept H1. Even though the 

probability of exceeding higher thresholds (BF > 6, BF > 10) for a true H0 remains low (see 

Figure 6) scientists may wish to consider a threshold of BF > 6 for sample sizes greater than 40, 

or a threshold of BF > 10 for sample sizes greater than 140. 

 Our recommendations should be considered contiguous with our simulation study’s 

limitations. First, it must be noted that our simulated BFs are limited to the values of the 

parameters (r, n, sd) used to inform the simulation (Figure 2). However, the linear relationship 

between BFH1 and BFH0 as demonstrated by our regression models, indicate that the disanalogy 

can likely be expected for different (i.e., higher) values of the parameters. Future work may seek 

to investigate if and when this disanalogy reaches a plateau. Relatedly, another limitation of the 

simulation relates to the choice of using the same value for the expected effect size and the r 

scale of the Cauchy prior. While this only affects the estimation of BFH1 (since for BFH0 the 

effect size is always 0), it may lead to a less accurate estimate of the ratio between BFH1 and 
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BFH0. Though, given that this approach does not affect BFH0, our recommendations for the use of 

a BFH0 > 3 as an adequate evidence threshold is not considered subject to this limitation.  

A final limitation of the simulation is related to the use of the paired t-test to estimate the 

BFs. As such, it can be argued that our recommendations may not be translatable to an 

independent, a one sample, or any one-sided (directional) t-test. While it is likely that the ratio 

between BFH1 and BFH0 for other forms of the t-test will differ, the underlaying approach of 

calculating a BF remains susceptible to the same limitation of the Savage-Dickey density ratio 

(Figure 1). Further, the t-test used in our simulation can be considered equivalent of a two-sided 

one-sample t-test (i.e., testing a sample against the value 0; Phylactou et al., 2022), and an 

independent t-test assuming equal group sample size and variance (although in this case n 

represents the size per group and not the total sample size; Phylactou & Konstantinou, 2022). In 

terms of one-sided tests, similar results to ours can be anticipated when H0 represents no 

difference (i.e., H0 = 0), but the BFH1 to BFH0 ratio will most likely differ when H0 represents a 

directional effect (e.g., H0 < 0 or H0 > 0). Subsequent work may aim to validate our findings for 

different forms of the t-tests. 

In conclusion, our study uses a large sample of simulated data to provide evidence in 

support of the use of flexible BF thresholds, when such thresholds are implemented. We 

demonstrate that, for the t-test, collecting Bayesian evidence, as reflected through the BF, when 

H0 is true is not analogous to collecting Bayesian evidence when H1 is true. Because the 

probabilities of reaching a BFH0 > 6 or a BFH0 > 10 are slightly above chance, we propose that, 

independently of the evidence threshold used for H1, a BF threshold of BFH0 > 3 is considered 

adequate by scientists within the field of behavioural and psychological research for H0.               
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Supplementary Material 1 

Supplementary Figure 1. Probabilities of reaching a predefined Bayes Factor threshold for different effect sizes 

and sample sizes. 

 

Supp. Fig 1. Probability of exceeding a predefined Bayes Factor (BF) threshold when H1 is true and when H0 is 

true, for different sample sizes and expected effect sizes, for three different thresholds (BF > 3, BF > 6, BF > 10). 

For illustration purposes, sample sizes were grouped into bins of 10, and effect sizes into bins of 0.2.  
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Supplementary Figure 2. Evidence of exceeding the Bayes Factor threshold in at least 50% of the simulations. 

 

Supp. Fig 2. Evidence of exceeding a Bayes Factor (BF) threshold of (A) 3, (B) 6, and (C) 10, in at least 50% of 

the simulations when H1 is true and when H0 is true, for different sample sizes and effect sizes (grey dotted line 

represents a logBF10 = 0). Note. Missing values are log(Bayes Factor) values which equal to infinity (positive or 

negative). The exact values for each test are provided in Supplementary Material 2. 
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