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Abstract
Within the fields of behavioural and psychological research, the use of Bayesian statistics has
gathered increased interest. A statistical test commonly employed in behavioral and
psychological research is the #-test. For the Bayesian #-test, a Bayes Factor (BF) can be computed
which reflects evidence in favor of either the alternative hypothesis (H;) or the null hypothesis
(Hp). Even though the BF is a continuous measure of evidence, it is common to define specific
thresholds for accepting the evidence in favor of either the H; or the Hy. Such evidence
thresholds (e.g., BFF > 3, BF > 6, BF > 10) are adopted by related scientific journals to define
minimum publication or preregistration requirements. However, exceeding these thresholds is
not analogous when H; is true compared to when Hp is true. In turn, this disanalogy might
require scientists to invest additional time and resources when H) is true, as opposed to when H;
is true. In this study, we simulated 200 million BF's for various effect size, sample size, and
variance assumptions, to demonstrate this disanalogy. Further, we show that despite having small
shifts in the sample sizes required for exceeding various BF thresholds when H; is true, when the
Hy1is true the probabilities of exceeding a BFF > 6 or a BF' > 10 are close to chance. As such, we
recommend the use of a BF > 3 evidence threshold for the Hjindependently of the evidence

threshold set for H;.
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Can we Find Evidence for the Null in a Bayesian T-Test? Not Unless we Reconsider Bayes

Factor Thresholds

Following the so-called replication crisis (see Derksen, 2019; Nelson et al., 2018),
behavioural and psychological research has increased its reliance on rigour-enhancing methods.
Rigour-enhancement includes adopting methods such as pre-registration and methodological
transparency (Chambers & Tzavella, 2022; Lin et al., 2024; Nosek et al., 2018), confirmatory
testing (Dienes, 2014; Lakens et al., 2020), and appropriate sample size recruitment (Lakens,
2013, 2022). Such rigour-enhancing methods have been shown to increase the replicability of
findings from the behavioural and social sciences (Protzko et al., 2023; but see van den Akker et
al., 2023)!.

Within a similar context, many researchers have advocated for the adoption of Bayesian
statistics, contrary to the traditional Neyman-Pearson frequentist approach (Neyman & Pearson,
1933), for making inferences and reaching conclusions (Dienes, 2014, 2021; Heck et al., 2023;
Kruschke, 2013; Rouder et al., 2009; Schonbrodt et al., 2017; Wagenmakers et al., 2010). One of
the arguments in favor of the adoption of Bayesian statistics, relates to the calculation of the
Bayes Factor (BF). The BF has the advantage of quantifying evidence in favor of either of two
competing hypotheses, such as the alternative hypothesis (H;) or the null hypothesis (Hp), as
opposed to the conventional approach of using a p-value, which can only inform about the
rejection (or the failure of the rejection) of Hy (Johansson, 2011; Wagenmakers, 2007; but see
Lakens et al., 2020 for examples of frequentist tests for Hp).

One of the statistical tests frequently utilized in behavioural and psychological research is
the z-test, which can be used to explore pairwise comparisons. The Bayesian approach for the #-
test is thoroughly described in earlier work (Fu et al., 2021; Kruschke, 2013; Rouder et al.,
2009). For the commonly used Bayesian ¢-test, H; is assigned a prior distribution, which
expresses the anticipated effect size under H;. In psychology, the prior distribution is most
commonly described by a curved distribution, and is usually expressed as a Cauchy (Rouder et
al., 2009). Once data are observed a posterior distribution can be computed, which represents the

uncertainty about the statistical parameter of interest (i.e., the difference between the two

! At the time of writing, editors at Nature Human Behaviour were investigating criticisms regarding the registration,
hypotheses, predictions, and analyses of the Protzko et al. (2023) paper and an editorial response was meant to
follow.
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samples). Considering that most model comparisons in psychological research involve nested
models (i.e., the null hypothesis is a special case of the model, which contains all parameters for
the z-test; Heck et al., 2023; Wagenmakers et al., 2010), a BF can be computed for the Bayesian
t-test using the Savage-Dickey density ratio (Dickey, 1971).

Put simply, the Savage-Dickey density ratio is a convenient way of computing BFs for
nested models, by dividing the height of the posterior distribution by the height of the prior
distribution at a specific value of interest (Dickey, 1971; see also Heck et al., 2023;
Wagenmakers et al., 2010). In the case of a #-test, this value of interest will typically concern 6 =
0, representing no differences between the two samples. An illustration of how the BF'is
calculated based on the Savage-Dickey density ratio is shown in Figure 1 (see Wagenmakers et
al., 2010 for details and mathematical proof). This approach of calculating a BF' is adopted by
widely used software for conducting Bayesian statistics, such as JASP (for examples see

Wagenmakers et al., 2018) and JAMOVI.

Figure 1. Illustration of the Savage-Dickey Density Ratio Method of Calculating a Bayes Factor.
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Fig 1. The Savage-Dickey density ratio estimates a Bayes Factor for two competing (nested) models (e.g., H; vs.
Hy) by dividing the height of the posterior distribution by that of the prior distribution at a specific value of
interest (or vice versa). In this example, the value of interest is & = 0 (i.e., no difference), represented by the gray

dotted line. The data are illustrated to show the Bayes Factor (A) when H; is true (6 # 0) and (B) when Hpis true
6=0).

Following the Savage-Dickey approach, the resulting BF reflects the marginal likelihood
of a set of data under H; over Hy, often denoted “BF;y”, or the likelihood of Hypover H;, in which
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case denoted “BFy;”. Accordingly, a BF ;o> 1 indicates evidence in support of H;, while a BFy; >
1 indicates support for Hy?. The BF can range from negative infinity to infinity, and the higher
the BF, the more evidence we have in favor of the respective hypothesis. As such, the BF serves
as a continuous, updatable, measure of evidence, where additional observations can be collected
until the BF reflects what one considers adequate evidence in favor of one of the competing
hypotheses with confidence (Schonbrodt et al., 2017; Schonbrodt & Wagenmakers, 2018; van
Ravenzwaaij & Etz, 2021).

Despite the BF’s continuous property, recommendations have been proposed for setting
specific evidence thresholds for the BF. Common evidence thresholds based on
recommendations from Jeffreys (1998; see also Lee & Wagenmakers, 2014), are shown in Table
1. These recommendations are meant to serve as a heuristic to help researchers decide whether to
‘accept’ that there is adequate evidence to support either H; or Hy, once the BF reaches or
exceeds a specific, predefined threshold. This practice opposes the nature of the BF as a
continuous measure of evidence, however it may serve an important role in psychological
science, for which some argue that dichotomous claims are crucial (see Uygun Tung et al., 2023).
Further, given the BF’s updatable property, it can also serve as an indicator when deciding
whether adequate sample size has been included, and thus informing researchers if data
collection should be continued or stopped (Fu et al., 2021; Schonbrodt et al., 2017).

Table 1. Bayes Factor evidence threshold recommendations (adapted from Jeffreys, 1998 and Lee &
Wagenmakers, 2014).

Bayes Factor Log (Bayes Factor) Interpretation
>1-3 >0-1 Anecdotal evidence
>3-10 >1-2.3 Moderate evidence
>10-30 >2.3-3.4 Strong evidence
>30-100 >3.4-4.6 Very strong evidence
>100 >4.6 Extreme evidence

Note: Log (Bayes Factor) column added for reference only and illustrates the respective Bayes Factor log
transformation.

2 BFs are ratios, where BFpand BFo; simply represent the inverse of one over the other (i.e., BFo:= 1/BF10). As
such, both BFpand BFy; can be used to quantify evidence for either hypothesis. For example, a BF9 = .5 indicates
that the data are twice as likely to be represented under Hothan H; and is the same as BFo; = 2. For the purpose of
this work, and to make comparisons more intuitive, we use BF o for presenting our results for a simulated true H;
and a BFp; when presenting our results for a simulated true Ho.
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At the time of writing, the use of evidence thresholds for BFs is widely adopted by many
journals relevant to behavioural and psychological research. In detail, many journals define
minimum BF thresholds, which are required for publication and/or preregistration. The minimum
BF threshold requirements vary from journal to journal, with common thresholds set at BF' > 3
(e.g., Psychology of Consciousness: Theory, Research and Practice), BF > 6 (e.g., Cortex,
Neurolmage: Reports), and BF > 10 (e.g., Nature Human Behaviour). Notably, this minimum
BF threshold is expected to be the same for both BF ;9 and BFy;, which can be problematic,
especially in the case of the commonly used #-test.

The problem of designating the same threshold to both BF;p and BF; relates to the
representation assigned by the prior distribution to the value of interest. As mentioned
previously, in the Bayesian #-test, the Savage-Dickey density ratio compares the heights of the
posterior and prior distributions at & = 0. However, 6 = 0 happens to be the point where the prior
distribution has its highest density. Because of this, the value 0, which also represents the Hy, is
assigned a higher probability. As such, as the central tendency of the posterior distribution moves
further away from 0, the highest point of the prior distribution is compared to a lower point on
the tail of the posterior distribution (Figure 1A). Contrary, when the central tendency of the
posterior distribution moves closer to 0, the highest point of the prior distribution is compared to
a higher point towards the center of the posterior distribution (Figure 1B). Respectively,
obtaining a BF when H is true (8 # 0) is not analogous to obtaining a BF when Hj s true (o = 0),
since the high density of the prior distribution at 0, will result in a smaller posterior-to-prior
height ratio, hence, a smaller BF.

The disanalogous nature of BF's when H is true compared to when Hp is true has been
mentioned in earlier work (Schonbrodt & Wagenmakers, 2018), and it has been demonstrated in
previous simulations (Phylactou et al., 2023; Phylactou & Konstantinou, 2022). This disanalogy
has led some researchers to propose the use of ‘flexible’ or ‘negotiable’ BF thresholds (Weiss,
1997; see also Dienes, 2016; Dienes & Mclatchie, 2018), where, for example, different
thresholds are used for H; (e.g., BF 19> 6) and Hy(e.g., BFp; > 3). However, to date, the de facto
approach adopted by various journals is to set a single, identical, BF threshold for both H; and
Hy. In the context of a #-test, reaching a specific threshold can be more time-consuming, resource

demanding, and, in turn, more expensive for when H is true, as opposed to when H; is true.
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Considering the above, the current use of BF thresholds needs to be reconsidered.
Therefore, the purpose of this simulation study is to demonstrate the disanalogy between
reaching an evidence threshold for Hy compared to H; with the Bayesian #-test. Further, this
study attempts to define a BFy; threshold that could serve as comparable to a BF o, to guide
researchers, editors, reviewers, and other stakeholders, when designing, conducting, and

evaluating research.

Methods

To illustrate the disanalogy between BF9and BFy; we run a simulation that was designed
based on previous work (Kruschke, 2013; Phylactou et al., 2023; Phylactou & Konstantinou,
2022; Schonbrodt & Wagenmakers, 2018; van Ravenzwaaij & Etz, 2021) and generated 200
million BFs: 100 million BF 9 simulating a true H; and 100 million BFy; simulating a true Hy. To
eradicate confusion with data analysis results, we report simulated BF’s reflecting a true H; as
‘BFy;’ and BF's reflecting a true Hy as ‘BFyo’. Our simulations were implemented in Python
(v3.11.5) and BF’s were computed using the Pingouin package (v0.5.3; Vallat, 2018).

Simulation Procedure

In our simulation, fori € {1, 2, 3, ..., 10000} iterations, we generated a standard
deviation (sd; ~ Uniform[a = 0.3, B = 2]), an effect size that also corresponded to the #-test prior
distribution Cauchy scale (7; ~ Uniform[a. = 0.1, B = 2]), and a sample size (n; ~ Uniform[a. =5,
=200]). For the i” iteration, j € {1, 2, 3, ..., 10000} iterations where further performed, and a
BF19 was calculated for when H; (8 # 0) was simulated to be true, while a BFy; was calculated
when Hy (6 # 0) was simulated to be true. To simulate a true H/, where & # 0, a sample with v;;
observations (vij = n; let v be an integer) was drawn from a normal distribution with mean »; and
standard deviation pii*!' (Wi ~ Normal[ri, pii*®'], where wi*"' ~ Half-Normal[sd;, 0.001]). A true
Hy (5 = 0) was simulated by generating a sample of zeros for vij observations. To conduct a #-test
and generate a BF, a reference sample (serving as the second sample for each #-test) was drawn
from a normal distribution centered on 0 with a standard deviation pi** (W™ ~ Normal[0, pi*¥?],
where pi*®? ~ Half-Normal[sd;, 0.001]). A BF 9 was calculated by conducting a paired z-test
between the reference distribution and the distribution representing H;, using a Cauchy prior
distribution centered on 0 with a scale 7;. The same Cauchy prior was used to calculate BFy; by
comparing the distribution representing a true Hy with the reference distribution. Therefore, each

ij iteration resulted in two BF, one reflecting a true H; (from hereon reported as BFy;) and one
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reflecting a true Hy (from hereon reported as BF o), resulting in 200 million BFs from 100
million total iterations. The BFs derive from various effect sizes and standard deviations ranging
from 0 to 2, and for numerous possible sample sizes ranging from 5 to 200. A visualisation of our

simulation is shown in Figure 2.

Figure 2. Simulation pipeline used to generate 200 million Bayes Factors.
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Fig 2. The simulation conducted to generate 200 million Bayes Factors and estimate the probability of surpassing
specific thresholds. Specifically, we used uniform distributions to generate a standard deviation (sd: ~ Uniform[a
= 0.3, B = 2]), an effect size and respectively the prior distribution scale of the #-test (r: ~ Uniform[a = 0.1, B = 2]),
and a sample size (vi ~ Uniform[a = 0.3, B = 2]), for i iterations (i € {1, 2, 3, ..., 10000}). For each iteration 7,
Bayes Factors were calculated j times (j € {1, 2, 3, ..., 10000} ). To simulate a true HI (8 # 0) a sample with the
expected effect size was drawn from a normal distribution (""" ~ Normal[ri, pii*®'], where pii*d' ~ Half-
Normal[sdi, 0.001]), for vi observations (vi;= n;, let v be an integer). To simulate a true H0O (5 = 0), vij zeros were
generated. To conduct a #-test and generate a Bayes Factor, a reference distribution centered on 0 was simulated
from a normal distribution (Wij**f ~ Normal[0, pi**], where pij*® ~ Half-Normal[sd;, 0.001]). The distribution for a
true H; was compared with the reference distribution using a Bayesian #-test using a Cauchy centered on 0 and
scale r: (not shown) as a prior distribution, to generate a Bayes Factor. The same Cauchy prior was used to

compare the distribution for a true Ho with the reference distribution and generate a Bayes Factor.
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Data Analysis
For our analyses, Bayesian linear regressions were conducted in JASP (v0.18.3, Apple

Silicon; https://jasp-stats.org), using a JZS prior (see Rouder et al., 2009) with scale » = .354 and

a binomial model prior (Model ~ Beta [o.= 1, § =1]). Bayesian ANOVA models were conducted
using a JZS prior with scale » = 0.5 and a uniform model prior (Rouder et al., 2012). Differences
between the probabilities were tested using paired #-tests, assuming a Cauchy prior distribution
centered on 0 with an  scale set at » = 0.5. A narrow r scale was chosen to assign higher density
around the null, and thus reflect a stricter criterion for assessing differences (Phylactou et al.,
2022). Reported means are accompanied by their standard error (SE) and 95% Credible Intervals
(CD.

For each iteration i we calculated the probability of exceeding a BF threshold of 3, 6, and
10, separately for BF; (when H; was true) and BFro (wWhen Hy was true). These thresholds (BF
>3, BF > 6, BF > 10) were chosen because they are commonly recommended and/or required
by relevant scientific journals. Moreover, to enable analyses in a computationally feasible
manner, for each iteration i we exported the median pooled standard deviation (sd), the median
logBFui, the median logBFro, and the ratio between the median logBF; over the median
logBFmo. We used the logarithmic transformation of the BFs as this allowed us to handle extreme
BF values that derived from iterations with large samples and effect sizes.

The logBFui /logBF o ratio was exported to evaluate the analogy between BF; and
BFno. In detail, a logBFu1 /logBFno ratio equal to one, illustrates that the resulting BF is identical
for H; and Hy under the same circumstances (same expected effect size, same sample size, same
data variability). Moreover, a logBFu /logBFny ratio greater than one illustrates that the resulting
BF is greater for H; than Hy under the same circumstances, and, respectively, a logBF i /logBFro
ratio smaller than one illustrates that the resulting BF is greater for Hythan H;. To assess the
relationship between sample size, sd, and expected effect size on the logBF i /logBFro ratio we
conducted a Bayesian linear regression. Accordingly, if the relationship between BFy; and BFno
is analogous, then none of the covariates included in the model (sample size, sd, expected effect
size) should describe the model better than a null model. Alternatively, evidence in favor of a
model including any of the covariates would provide support that BFy; and BFro do not share an

analogous relationship.


https://jasp-stats.org/
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Additional exploration was conducted after categorizing the data into bins. Specifically,
sample sizes were grouped into bins of 10, and expected effect sizes (and respectively ) were
grouped into bins of 0.2. These analyses were conducted as either one sample #-test testing
against the value 0.5 (equivalent to a 50% percentage of reaching the given threshold) or as a
paired #-test. These #-tests were described by a half-Cauchy distribution, with a wide scale » = 1.
The choice of » = 1 was motivated by the greater variation that was anticipated in the data, due to
the binned sample.

Data Availability

All material used in this study can be accessed through:

https://doi.ore/10.17605/OSF.I0/RCKF4.

Results

Following our simulations, we estimated the overall mean probability of exceeding a
predefined BF;> 3 (mean = .791, SE = .003, 95% CI=[.784, .797]), BFu:> 6 (mean = .759,
SE =.004, 95% CI =[.752, .765]), and BFy;> 10 (mean = .737, SE = .004, 95% CI = [.730,
.745]), when H; was true. Likewise, we estimated the overall mean probability of exceeding a
BFpo> 3 (mean = .789, SE = .003, 95% CI =[.784, .795]), BFro> 6 (mean = .576, SE = .004,
95% CI =[.569, .583]), and BF o> 10 (mean = .370, SE = .004, 95% CI =[.363, .377]) for a
true Hy. Bayesian paired #-tests revealed that the probabilities of exceeding BF > 3 were similar
between BFy; and BF o (logBF10=-3.939), but different for BF > 6 (logBF 9= ) and BF > 10
(logBF10= ). A summary of the overall probabilities is presented in Table 2 and illustrated in
Figure 3.

Table 2. Overall probabilities of reaching a predefined Bayes Factor threshold.

Threshold Mean probability (SE) Lower 95% CI Upper 95% CI t-test log(BF 1)
BFu;>3 0.791 (0.003) 0.784 0.797
logBF10=-3.939
BFmo>3 0.789 (0.004) 0.784 0.795
BFui>6 0.759 (0.004) 0.752 0.765
logBF10=
BFm>6 0.576 (0.003) 0.569 0.583
BFui>10 0.737 (0.004) 0.730 0.745
logBF10=

BFuo> 10 0.370 (0.004) 0.363 0.377
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Figure 3. Overall mean probability of reaching a predefined Bayes Factor threshold.
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Fig 3. Overall probability of exceeding a predefined Bayes Factor threshold when H; is true (purple line) and

when Hp is true (yellow line).

The probabilities of exceeding the predefined BF threshold for different effect sizes and
sample sizes are illustrated in Figure 4, for both BFy; (Figure 4A) and BF o (Figure 4B).
Heatmaps of the probabilities are provided in Supplementary Material 1 (Supp. Figure 1). To test
the analogy between BFx; and BFr we fit a linear regression on the logBFri /logBFro ratio with
the expected effect size (), the sample size (n), and the standard deviation (sd) as covariates. The
model that included all covariates (7; n, sd) provided the best fit (R’ = .691, model logBF = ).
Considering the estimated mean of each coefficient, the logBFu; /logBFy ratio can be expressed
as logBFui/logBFo=9.481 + 10.249(r) + 0.087(n) — 11.973(sd). This illustrates that the
logBFu1 /logBF o ratio is not analogous, but it increases as the expected effect size and sample
size increase, and decreases with greater data variability.

Moreover, we computed two separate regression models, independently for the logBF
and the logBFro with r, n, and sd as covariates. For logBF;, the best fit was provided by a model
including all covariates (R’ = .648, model logBF = ), and can be expressed as logBFu; = 25.061
+31.925(r) + 0.262(n) — 30.182(sd). For logBFno, the best model describing the data did not
include the sd covariate (R = .907, model logBF = 6.453). A comparison between the model
including all covariates (7 n, sd) and the model including only 7 and #, indicated that the model

with only 7 and n better described the data (l0gBF+n/+n+sa = 5.153). As such, the model
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describing logBFno can be expressed as logBFry=2.104 + 1.089(r) + 0.006(n). Taken together,
the results from the regression models illustrate that under similar circumstances, if H; was to be
true, evidence in favor of H; is likely to be larger than evidence in favor of Hy if Hy was to be

true.

Figure 4. Probability of exceeding a predefined Bayes Factor threshold for different effect sizes and sample

sizes.

Ao, B .

Probability of reaching BF threshold

....................

Sample size bin

Fig 4. Probability of exceeding a predefined Bayes Factor threshold when (A) H: is true and when (B) Ho is true,
for different sample sizes. Thick lines represent the mean probability across all expected effect sizes (and

respectively the r scale of the prior distribution for the #-test), while the dotted lines show the probabilities across
different expected effect sizes. For illustration purposes, sample sizes were grouped into bins of 10 and averaged

across all standard deviations.

To further explore whether a true H; results in higher BF's compared to Hy we performed
additional analyses by averaging across all sds, grouping sample sizes into bins of 10, and
grouping expected effect sizes (and respectively 7) in bins of 0.2. The logBFu; /logBF o ratios for
each effect size bin and a given sample size bin are illustrated in Figure SA. By employing
multiple one sample #-tests, we calculated whether the logBFri /logBFro ratios were greater than
1, thus, providing evidence for higher BF's for a true H; than a true Hy (Figure 5B). Results show
that with the exception of low r-scales (r < 0.4), logBFri/logBFr ratios were larger than 1
(mean logBF190=14.36, SE = 0.88, 95% CI =[12.63, 16.09]). Similar results were found when
testing whether logBF ;o were greater than logBFy; using paired t-tests (mean logBF 10 = 14.09,
SE =1.63, 95% CI =[10.87, 17.30]; Figure 5C). The logBFy for each of these tests individually
are provided in Supplementary Material 2.
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Figure 5. Evidence for higher Bayes Factors when H is true compared to when Hy s true.
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Fig 5. (A) The ratio of logBFu1 over logBFny for different expected effect size and sample size bins (grey dotted
line represents a ratio of 1). (B) Results from one sample #-tests comparing whether logBF10/logBF; is greater
than 1 (grey dotted line represents a logBF 1o = 0). (C) Results from paired t-tests comparing whether logBF 10 are
larger than logBFo: (grey dotted line represents a logBF 10 = 0).

To identify a BFny threshold comparable to a BFy; given this disanalogy, we explored the
conditions under which the BF threshold was exceeded in at least 50% of the simulations (Figure
6). The results of the series of one sample #-tests, testing whether the BF's from each effect size
and sample size bin exceed the 50% probability of reaching a predefined threshold are provided
in Supplementary Material 2 and are illustrated in Supplementary Material 1 (Supp. Figure 2). In
addition, heatmaps illustrate that the shift of the probabilities was larger across effect size and
sample size bins for the three different BF thresholds for BFyy compared to BFr; (Figure 6A; see
also Supplementary Material 2 for the results of each #-test individually). This finding was
supported by a repeated measures ANOVA conducted on the logBF's of each t-test, providing
evidence for a model including both the hypothesis factor (H; vs. Hy) and the threshold factor
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(BF >3 vs. BF > 6 vs. BF > 10), as well as their interaction (R? = .74, model logBF = 248.29)°.
These analyses also demonstrated that even though the logBFui/logBF o ratios for r < .4 are
smaller than 1 (larger BFrp compared to BFy;) for smaller sample sizes (see Figure 5), these BFs
fail to exceed the predefined threshold in at least 50% of the simulations (see Supplementary
Material 2; Supp. Figure 2).

To define the comparable BFry thresholds, we pooled probabilities across the various
effect sizes together (Figure 6B). In detail, BFu; reaches above chance (>50%) probability of
exceeding the BF threshold similarly for thresholds of BFy;> 3, BFu;> 6, and BFu;> 10, with a
sample size larger than 20. Conversely, BF o reaches above chance probability of exceeding a
BFro> 3 with a sample size of at least 10, but a BFy> 6 is not reached until a sample size of 40
is surpassed. Notably, a sample size of at least 140 is required, to reach above chance probability
of BFup> 10.

Collectively, our results provide evidence for the disanalogous relationship between BFp;
and BFno from a large set of simulated BF’s, considering various assumptions including different
expected effect sizes, sample sizes, and data variability. In summary, our data show that, with
equivalent assumptions, under a true H;, the resulting BF will be greater compared to the
resulting BF under a true Hy. We further illustrate that even though the BFy; will tend to be
smaller when data variability increases, BFro remains unaffected by data variability. Finally, our
simulations demonstrate that similar probabilities of exceeding a BF > 3 threshold can be
expected when either H; or Hy are true, but these probabilities differ when a BFF > 6 or BF > 10 is
considered. These differences are driven by the reduced probabilities of reaching the threshold

under a true Hyp. We next turn to a discussion of our findings.

Discussion
With a simulated sample of 200 million BFs, we demonstrate that, for the Bayesian #-test,
the probability of reaching a predefined BF threshold when H; is true is not analogous to the
probability of reaching a BF threshold under a true Hy. Even though this observation was
previously noted (Phylactou et al., 2023; Phylactou & Konstantinou, 2022; Schonbrodt &
Wagenmakers, 2018), this is, to the best of our knowledge, the first attempt to explicitly

3 For the computation of this analysis logBF = -oo values were replaced with the minimum logBF, and logBF = oo
were replaced with the maximum JogBF.
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investigate the relationship between BFu; and BFny for different sample sizes, effect sizes, and
data variances. Given the adoption of specific BF threshold requirements by scientific journals
for publication and/or preregistration, our findings have important implications for the use of

Bayesian statistics within the behavioural and psychological fields.

Figure 6. Above chance probability of exceeded the Bayes Factor Threshold.
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Fig 6. (A) Heatmaps illustrating the estimated probability of exceeding the predefined Bayes Factor threshold in
at least 50% of the simulations, for various effects and samples. (B) Sample size required to exceed the Bayes

Factor threshold in at least 50% of the simulations pooled across all expected effect sizes.

Even though the use of thresholds contradicts the property of the BF as a continuous
measure of evidence, their use may benefit behavioural and psychological research. For example,
aiming for a specific BF threshold can help researchers inform their sampling plan (e.g., sample
updating; Fu et al., 2021; Schonbrodt & Wagenmakers, 2018). Further, as mentioned earlier, the

use of these thresholds may also be necessary to adhere to specific scientific journal guidelines.
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However, the current use of the BF threshold (i.e., same threshold for H; and Hyp) may result in
spending additional time and resources, if the Hy under investigation is in reality true.

Researchers, reviewers, editors, and other stakeholders should consider this disanalogy
when designing and evaluating research. As an example, consider a hypothetical scenario, where
a research team is planning an experiment for an expected difference between two samples of a
magnitude of 0.4, with enough resources to recruit up to 60 participants. According to our
simulations, if H; turns out to be true, the experiment will have above chance probability of
exceeding a BF > 10 threshold but will only exceed a BF > 3 if Hj is true. Further, even with the
maximum sample size simulated here (n = 200), if Hy is true, the BF' > 10 threshold will not be
reached. In such a case, the research team will be able to target a scientific journal that requires a
BF > 10 threshold if H; is true, but not if Hy is true. In addition, if the research team is targeting
the specific journal, they might refrain from preregistration, due to the risk of not reaching the
threshold in the case of a true Hy. As such, we recommend that this disanalogy between BF; and
BFp is taken into consideration in cases where BF thresholds are required.

Our findings echo previous recommendations and provide evidence from a large
simulated dataset showcasing the necessity of considering flexible evidence thresholds between
BFr; and BFro (Weiss, 1997, see also Dienes, 2016; Dienes & Mclatchie, 2018). Following our
results, we recommend the use of a BFy; = 3 (BF ;o = 1/3) as an adequate threshold of evidence
for accepting the Hy independently of the evidence threshold used to accept H;. Even though the
probability of exceeding higher thresholds (BF > 6, BF > 10) for a true Hy remains low (see
Figure 6) scientists may wish to consider a threshold of BF' > 6 for sample sizes greater than 40,
or a threshold of BF > 10 for sample sizes greater than 140.

Our recommendations should be considered contiguous with our simulation study’s
limitations. First, it must be noted that our simulated BF’s are limited to the values of the
parameters (7, n, sd) used to inform the simulation (Figure 2). However, the linear relationship
between BFu; and BF o as demonstrated by our regression models, indicate that the disanalogy
can likely be expected for different (i.e., higher) values of the parameters. Future work may seek
to investigate if and when this disanalogy reaches a plateau. Relatedly, another limitation of the
simulation relates to the choice of using the same value for the expected effect size and the
scale of the Cauchy prior. While this only affects the estimation of BFy; (since for BFy the

effect size is always 0), it may lead to a less accurate estimate of the ratio between BFu; and
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BFHo. Though, given that this approach does not affect BFny, our recommendations for the use of
a BFno > 3 as an adequate evidence threshold is not considered subject to this limitation.

A final limitation of the simulation is related to the use of the paired #-test to estimate the
BFs. As such, it can be argued that our recommendations may not be translatable to an
independent, a one sample, or any one-sided (directional) ¢-test. While it is likely that the ratio
between BFu; and BFno for other forms of the #-test will differ, the underlaying approach of
calculating a BF remains susceptible to the same limitation of the Savage-Dickey density ratio
(Figure 1). Further, the #-test used in our simulation can be considered equivalent of a two-sided
one-sample #-test (i.e., testing a sample against the value 0; Phylactou et al., 2022), and an
independent #-test assuming equal group sample size and variance (although in this case
represents the size per group and not the total sample size; Phylactou & Konstantinou, 2022). In
terms of one-sided tests, similar results to ours can be anticipated when Hj represents no
difference (i.e., Hp = 0), but the BFy; to BFpy ratio will most likely differ when Hy represents a
directional effect (e.g., Hy < 0 or Hy> 0). Subsequent work may aim to validate our findings for
different forms of the #-tests.

In conclusion, our study uses a large sample of simulated data to provide evidence in
support of the use of flexible BF thresholds, when such thresholds are implemented. We
demonstrate that, for the #-test, collecting Bayesian evidence, as reflected through the BF, when
Hy is true is not analogous to collecting Bayesian evidence when H; is true. Because the
probabilities of reaching a BF > 6 or a BFuo > 10 are slightly above chance, we propose that,
independently of the evidence threshold used for H;, a BF threshold of BFro > 3 is considered

adequate by scientists within the field of behavioural and psychological research for Ho.
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Supplementary Material 1

Supplementary Figure 1. Probabilities of reaching a predefined Bayes Factor threshold for different effect sizes

and sample sizes.

Probability of BFy, > 3 Probability of BFy, > 6 Probability of BFy; > 10

0.1
o
N
@
g
b=
(]
o
o
k9]
o
[}
x
w

2

5 Sample size 200
Probability of BFyo > 3 Probability of BFyo > 6 Probability of BFyo > 10

0.1
o
N
@
g
b=
o
o
(7]
k9]
o
o
x
w

~

5 Sample size 200
Probability BF > threshold

S

0 0.2 0.4 0.6 0.8 1

Supp. Fig 1. Probability of exceeding a predefined Bayes Factor (BF) threshold when H is true and when Hy is
true, for different sample sizes and expected effect sizes, for three different thresholds (BF > 3, BF > 6, BF > 10).

For illustration purposes, sample sizes were grouped into bins of 10, and effect sizes into bins of 0.2.



RECONSIDERING BAYES FACTOR THRESHOLDS 19

Supplementary Figure 2. Evidence of exceeding the Bayes Factor threshold in at least 50% of the simulations.
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Supp. Fig 2. Evidence of exceeding a Bayes Factor (BF) threshold of (A) 3, (B) 6, and (C) 10, in at least 50% of
the simulations when H; is true and when Hy is true, for different sample sizes and effect sizes (grey dotted line
represents a logBF10 = 0). Note. Missing values are log(Bayes Factor) values which equal to infinity (positive or

negative). The exact values for each test are provided in Supplementary Material 2.



